
- Page 1 -

Abstract

This report is to fulfill the last part of the 6.199 Advanced Undergraduate Project requirement.

The project’s objective is to build mechanisms that detect the faults expected in the Library

2000 (L2000) system. The mechanisms include a local integrity checker and a remote integrity

checker. The main accomplishments of the project are:

• Design of the detection mechanisms

• Analysis of the design in relation to the fault models

• Partial implementation of the detection mechanisms

- Page 2 -

Table of Contents

ABSTRACT .. 1

TABLE OF CONTENTS ... 2

1. INTRODUCTION .. 6

2. GENERAL CRITERIA FOR DESIGN ... 8

3. MOTIVATION ... 9

4. 6.199 PROJECT ... 10

5. FAULT MODELS/THREAT LIST .. 11

5.1 FAILURE MODES/THREAT LIST .. 11
5.2 DYNAMICS OF THE SYSTEM ... 12
5.3 CHANGE MODEL ... 13
5.4 SUGGESTION FOR CHANGE PROPAGATION SCHEME ... 14

6. INTERFACES AND ASSUMED ENVIRONMENTS .. 15

6.1 NETWORK INTERFACE ... 16
6.2 REPLICA INTERFACE ... 17
6.3 UID TO LOCATION TRANSLATION TABLE (ULTT).. 17

6.3.1 ADVANTAGES OF USING A ULTT.. 18
6.3.2 DISADVANTAGES OF ULTT.. 19

6.4 PROPERTY OF CHECKSUM ALGORITHM .. 20
6.5 OTHER ASSUMPTIONS... 20

7. DETECTION SCHEME ... 21

7.1 LOCAL INTEGRITY CHECKER (LIC)... 22
7.1.1 LOCAL DIFFERENCE REPORT .. 22

- Page 3 -

7.1.2 LIC CONFIRMATION THROUGH VOTING... 23
7.1.3 LIC REPAIR MODEL.. 25

7.2 REMOTE INTEGRITY CHECKER (RIC).. 26
7.2.1 REMOTE DIFFERENCE REPORT ... 27
7.2.2 RIC CONFIRMATION THROUGH VOTING .. 28
7.2.3 RIC REPAIR MODEL ... 29

7.3 ANOTHER VIEW OF THE DETECTION SCHEME.. 30

8. ANALYSIS ... 32

8.1 STATIC SYSTEM.. 33
8.1.1 E1, E2, AND E3 ... 34
8.1.2 E4 AND E5... 34
8.1.3 E6... 34
8.1.4 OBSERVATIONS.. 35

8.2 DYNAMIC SYSTEM... 36
8.2.1 LOCAL INTEGRITY CHECK.. 36
8.2.2 REMOTE INTEGRITY CHECK... 38
8.2.3 OBSERVATION.. 38
8.2.4 CASE BY CASE ANALYSIS.. 39

8.2.4.1 Faults on a Replica .. 39
8.2.4.2 Changes Reflected on a Replica .. 40
8.2.4.3 Changes not Reflected on a Replica .. 41

9. ISSUES NOT ADDRESSED IN THIS PROJECT ... 42

9.1 I/O THROUGHPUT AND STRIPING ... 42

10. ACKNOWLEDGMENT ... 44

BIBLIOGRAPHY .. 45

APPENDIX ... 47

11. IMPLEMENTATION ... 47

11.1 PATHNAME AS UID ... 47
11.2 NETWORK INTERFACE ... 47
11.3 REPLICA INTERFACE ... 48
11.4 WHAT WAS COMPLETED.. 49

11.4.1 NETWORK INTERFACE... 50
11.4.2 FILE SYSTEM STRUCTURES... 50

- Page 4 -

11.4.3 CHECKSUM FILE GENERATOR ... 50
11.4.4 CHECKSUM FILE COMPARATOR ... 50
11.4.5 LOCAL INTEGRITY CHECKER SKELETON ... 50
11.4.6 REMOTE INTEGRITY CHECKER SKELETON .. 51
11.4.7 ROUTINES THAT INTERFACE WITH NETWORK INTERFACE.. 51

11.5 CACHE AND DETECTING FAULTS ON DISK .. 51
11.6 ORDER OF LISTING IN CHECKSUM FILE .. 51

- Page 5 -

6.199 Project Report
MIT Laboratory of Computer Science - Library 2000

Supervisor: Jerome H. Saltzer

by Komkit Tukovinit

Fault Detection in L2000 Storage-Replication Service

This report is to fulfill the last part of the 6.199 Advanced Undergraduate Project requirement.

The project’s objective is to build mechanisms that detect the faults expected in the Library

2000 (L2000) system. The mechanisms include a local integrity checker and a remote integrity

checker. The main accomplishments of the project are:

• Design of the detection mechanisms

• Analysis of the design in relation to the fault models

• Partial implementation of the detection mechanisms

This report is geared toward the readers interested in continuing the replication research with

Library 2000. The document is organized as shown in Table 1 and in the table of contents.

Note that sections 1 and 2 provide the general introduction to the project, while sections 3

through 8 are the real substance of the project. Sections 9 and 10 wrap up the report.

- Page 6 -

Sections Comments

1 • briefly introduces Library 2000 project and its replication research

• a refresher of the general concepts used in building a fault-tolerant system

2 • bullet-points general criteria for design that influence the choices made in the

project

3 • provides the motivation for the project

4 • introduces and sketches the scope of the 6.199 project

5 • discusses the faults that are being addressed by the report

6 • shows the overall system design and the made assumptions about the system

7 • specifies the detection scheme used to detect the modeled faults

8 • argues why the detection scheme would detect the modeled faults

9 • bullet-points and discusses the issues not addressed in the project

10 • gives credit to whom the credit belongs

Table 1: Organization of the 6.199 Report

1. Introduction

“The technology of on-line storage, display, and communications will, by the year 2000, make it

economically possible to place the entire contents of a library on-line, accessible from computer

workstations located anywhere.” [Saltzer1] Many engineering issues arise when such a library

system is built. One of them is how to preserve the digital data stored in the system for several

decades: a period of time longer than the storage’s lifetime.

What could go wrong with the data in a storage system? Something “goes wrong” (a fault

occurs) when the stored data cannot be accessed or when the data returned by the system is

incorrect. There are many causes of faults, but they can be broadly categorized as follows

[Gray1]: environments, operations, maintenance, hardware, software, and process. Examples

for each category are listed in Table 2 for concreteness.

- Page 7 -

Category Examples

Environments Power failure, weather, earthquakes, fires.

Operations Crucial processes killed, system configured improperly.

Maintenance Good disks with data taken out to be repaired instead of bad disks.

Hardware Disks fail, Processor fails.

Software Programs maliciously mutate or destroy data.

Process Shutdown due to administrative decision.

Table 2: Fault Categories And Their Examples

How can faults be tolerated or masked by the system? To mask the faults, the system must be

able to detect the faults. Detecting the faults is the topic of this report which will be discussed

in the later sections. To mask the faults, the system must also be able to correct the detected

faults.

The system must have redundant data to correct faults because redundant data must be used

to reconstruct lost data. Data can be made redundant by replicating it using different

mechanisms including tape backup and RAID. However, the two mechanisms have undesired

properties that can be fixed if the data are replicated on replicas located in different

geographical locations. For tape backup, it is hard to verify that the stored data can be

retrieved when needed, and that the backed-up data include everything that needs to be

backed up. RAID cannot tolerate environmental faults such as a hurricane or an earthquake

since all redundant data are located in one geographical location.

Replicating only the data does not eliminate all faults. The mechanisms that detect and repair

the faults must also be replicated to avoid a single-point failure.

What is the most important characteristic of the replicas housing the replicated data and

software? The answer is the probability that the replicas will fail simultaneously to the point that

the data cannot be recovered must be low. Therefore, the replica failure modes must be as

independent as possible. Independence can be maximized by minimizing the replicas’

commonalties. For example, replicas should be located in different geographical areas so that

a natural disaster would not destroy all the replicas.

- Page 8 -

When the replica failure modes are independent, it is unlikely that the data will fail

simultaneously. However, without failure corrections, the data will fail serially. A piece of data

may fail on a replica, then the same piece fails on another replica, and so on, up to the point

that the data is irrecoverable. Hence, it is imperative that a single fault be detected and

corrected as soon as possible. In another word, the replicas’ window of vulnerability—the

period when additional faults can exceed the threshold of recoverability—should be as small as

possible.

Besides detecting and correcting faults, the L2000 replication service must also properly

propagate legitimate data changes to the replicas. This can be problematic: the replicas might

view legitimate changes as faults, and the replicas will fix the changes; hence, the data in the

system cannot be modified. Moreover, since maximizing the replicas’ independence means

locating them in a wide geographical area, the replication service—detecting and repairing

faults, and propagating legitimate changes to the replicas—must be done efficiently to offset

communication cost and unreliability.

2. General Criteria for Design

The general criteria for design, as mentioned in [Library2000-1], permeate the design choices

made in this report. The criteria are as follows:

• Works on standard operating system, file system, disk storage system, and networking

protocol.

• Replicas’ data may be weakly consistent [Golding1, Golding2, 6.826-1] and updates can be

unavailable for a bounded time.

• Works with system with at least 1,000,000 Gbytes of data.

• Should be made simple by comprising a small number of independent mechanisms whose

correctness can be verified.

• Lifetime of data exceeds the lifetime of any storage and exceeds the mean time between

major disasters.

- Page 9 -

3. Motivation

Why do we design a new storage-replication service when a few [Liskov1, Satyanarayanan1,

Page1, Hisgen1, Golding1, Golding2] have already been designed? This is because the demands

on the replication service in L2000 are different from the systems that researchers have

considered. There are four main differences:

• Difference in frequencies of expected events

• Length of data life

• Need for simple implementation

• Ability to layer the scheme over available file systems without modification

The first reason is the most important.

First, the frequencies of expected events in the L2000 system are different, given the volume

and the lifetime of data. Table 3 contrasts the relative frequencies of expected events in other

file systems with those in L2000. As shown in the table, in the L2000 system, the rate of data

decay is expected to exceed the rate of data update, and to be in the same magnitude as the

rate of data addition. Therefore, we must emphasize discovering and repairing data decay,

while other systems emphasize, for example, high performance in obtaining consensus on data

update and addition.

Events Other File Systems L2000

Reading data Most frequent Most frequent

Updating data Second most frequent Rare

Adding Data Less frequent Less frequent

Data spontaneously decayed Rare Less frequent

Table 3: Relative Frequencies of Expected Events

Second, the data on the L2000 system must last for decades and survive the upgrades and

replacements of storage devices. The data on the old device must be copied—correctly and

automatically—to the new device when the new device is installed. In contrast, other file

systems usually require manual copy when a new device is installed.

- Page 10 -

Third, the L2000 design should be simple so that the correctness of the design is obvious or

can be verified easily. This property gives confidence that the data on the system will survive

unaltered through decades.

Fourth, the L2000 design must layer on top of the available file systems. Modifications to

system programs are avoided. Not all the works cited, [Liskov1, Satyanarayanan1, Page1,

Hisgen1, Golding1, Golding2], have this need.

4. 6.199 Project

The above three sections discussed the goals of the L2000 replication research, so how does

this project contribute to the research? To correct or mask faults on a system, the faults must

be detected. The project provides some thoughts about how to detect faults. Because there

are many faults that can occur on the system, but there are only a few things that can be

accomplished in the project, the fault that has the highest probability of occurring—data

mutation—is focused upon.

The following four sections, sections 5 through 8, are the substance of the project. The flow of

the sections roughly follows Figure 1 [Dally1]. The fault models in section 5 discuss how faults

occur. Section 6 describes overall designs and assumed environments of the system. The

detection scheme is discussed in section 7 and finally, the analysis of the scheme is discussed

in section 8.

Fault M odel

Synthesis

Analysis

Experim ent

Figure 1: Steps in Engineering Reliability

- Page 11 -

5. Fault Models/Threat List

As in any synthesis of a fault-tolerant system, the ways the system fails are considered by

synthesizing a fault model or a threat list. To ease the analysis, two fault models are used.

The two models—static and dynamic—have similar fundamental failure modes but different

data dynamics.

To discuss the dynamic model, a model of how the data change in the system is also

considered.

Section 5.1 discusses the failure modes common to the static and the dynamic systems.

Section 5.2 differentiates the two systems. Section 5.3 discusses how the data changes in the

dynamic system. Finally, section 5.4 suggests how changes in the dynamic system are

propagated.

5.1 Failure Modes/Threat List

A threat is an occurrence that causes the system to fail. Many threats can cause system’s

failure, but only a few have probabilities significant enough to be worrisome. Hence, it is

sensible to worry the most about a few threats with the highest probabilities of occurring.

In this project, only one threat is addressed: data mutation. Since L2000’s documents are

stored on file systems, the threat to the documents has the same characteristics as the threat

to the files in a file system. Data mutation in a traditional file system means file (bit) corruption,

file disappearance, and file addition. File corruption means the bits in a file were illegitimately

changed. File disappearance means data files illegitimately disappear. File addition means

files that are not part of the data are illegitimately added.

How often do faults occur? The upper bound of the frequency cannot be computed since there

are no frequency statistics for all the causes (Table 2) of data mutation. However, the lower

bound can be estimated by using the failure characteristic of the storage device.

- Page 12 -

The frequency of disk failures per year can be calculated as in Equation 1 [Patterson1]. 10,000

is the approximate number of hours per year. Note that the equation relies on the assumption

that disks fail independently. Also note that disks’ MTTF is in hours.

Failures Per Year
of disks

Disk MTTF
_ _

_ _ ,

_
= × 10 000

Equation 1: Frequency of Disk Failures

According to [Library2000-1], a typical data center has 1,000 disks. According to the

specification, the Mean Time To Failure (MTTF) of 1992’s disks is 500,000 hours. Therefore,

the lower-bound of failure rate is 20 failures per year. For a typical 2000’s data center, the

number of disks is the same, but the disks’ MTTF is more than 1,000,000 hours. Therefore, the

lower-bound failure rate is 10 failures per year.

We speculate that the rate of data failures (decay) will exceed the rates of data update and

deletion, and will be in the same magnitude as the rate of data addition. The rate of failures is

higher than the computed lower bound because of the following reasons:

• the computed value does not include other failure causes

• disks located at the same site often do not fail independently

• manufacturer’s specification of disks’ MTTF is doubtful: 30 years of experience shows that

the number is unreliable

• the indirection table that is used for convenience inherently cannot be replicated in a

distributed way

The indirection table will be described in section 6.3.

5.2 Dynamics of the System

The last section discusses the general failure modes of the system. This section discusses the

system dynamics—how the data change over the system’s lifetime. We analyze systems with

two dynamics:

• static

• dynamic

- Page 13 -

The static system is a system on which the data does not change: the data stays the same from

the beginning to the end of system’s lifetime. The dynamic system is a system on which the

data changes: the data can be added, deleted, and updated. The following paragraph

elaborates on the static and the dynamic systems.

Figure 2 shows the state progress of a replica. In the following explanation, we assume that

there are no illegitimate changes applied to the system, or they have been repaired properly. In

the static system, since there is no change in the system, the replica’s states—the replica’s

documents and the checksum data—are equal in all periods. For example, the states in period

N+2 would be equal to those in period 1. In the dynamic system, this is not the case. It is

possible that the states will differ. For example, the states in period N+2 might be different from

the states in period 1.

Replica’s
Data

Replica’s
Data

Replica’s
Data

Replica’s
Data...

Checksum
Data

Checksum
Data

Checksum
Data

Checksum
Data...

N+2N+1N1

Figure 2: Progress of Replica’s State

5.3 Change Model

We would like to discuss how faults are detected in the static and the dynamic systems. To

discuss how legitimate changes are detected in the dynamic system, a model of how the data

changes is needed. This subsection discusses the model.

In this proposed change model, valid changes occur when the changes are applied to the

majority of the replicas. Valid changes include file addition, file deletion, and file update. For

example, in Figure 3, the changes to replicas BC in the replica group ABC are valid because

the changes are applied to the replica majority.

- Page 14 -

BA

C

Changes

Figure 3: Example of Valid Changes to System

5.4 Suggestion for Change Propagation Scheme

What do we do with the legitimate changes once they are detected? In this subsection, a

propagation scheme that might work in the system is suggested. However, since the scheme is

not part of the project, it will not be analyzed. The suggestion is to let the repair mechanism

propagate changes seen on the replica majority to the rest of the replicas.

In the detection scheme being proposed, when changes are applied to the replica majority, the

minority replicas will detect the changes. The minority replicas will list the changes as items

that need to be repaired, and the changes will be propagated to the minority replicas as repair

items.

For example, in Figure 3, changes are applied to replicas BC, a majority of the replica group. A

detection mechanism on A will detect the changes. Since the changes are on the majority of

the replicas, A will see the changes as legitimate and will retrieve the changes from either B or

C.

The propagation scheme has a flaw. If the changes applied to the replica majority decay before

they are propagated, the changes will be in no-majority states, and will not be propagated. For

example, in Figure 3, if the changes on B are deleted, then only C has the changes making C a

minority. C will eventually detect its differences from the replica majority—which says that there

have been no changes—and treat the changes as faults. C then gets rid of the changes. This

is a case where a single fault causes a valid change on the system to disappear; the changes

that have not been propagated to all the replicas are not fault-tolerant.

- Page 15 -

Hence, the legitimate changes to the replicas are said to be in two stages: fragile and fault-

tolerant [Library2000-1]. Changes that are in the fragile stage have not been propagated to all

the replicas, and might disappear or be marked as irrecoverable before they are propagated.

Changes that are in the fault-tolerant stage have been propagated to all the replicas and are as

fault-tolerant as any other data in the replicas.

6. Interfaces and Assumed Environments

Figure 4 shows a design of each replica in the system. Each replica consists of mechanisms

that are run as daemons, and of interfaces through which the daemons and L2000 clients

access the replica’s data. The mechanisms shown in Figure 4—local integrity checker (LIC)

and remote integrity checker (RIC)—are detection mechanisms that detect data changes on the

replicas. The detected changes can be legitimate or illegitimate. The mechanisms are not

described in this section: LIC is discussed in section 7.1 and RIC in 7.2.

N e tw o rk In te r fa c e

R e p lic a In te r fa c e

L o c a l
In te g r ity
C h e c k e r

. . .

. . .
F i le

S y s te m
F ile

S y s te m
F ile

S y s te m

R e m o te
In te g r ity
C h e c k e r

C lie n t
P ro c e s s

O th e r
R e p lic a s

Figure 4: Interfaces and Mechanisms on a Replica

L2000 clients and the detection mechanisms access the replica’s data in a well-defined way.

They use the shown interfaces—the network interface and the replica interface—to access the

replica’s data. The network interface is described in section 6.1 and the replica interface in 6.2.

Besides the interfaces, other environments assumed in the project are also described in this

section. Section 6.3 describes the UID used as a handle to the replica’s data, its advantages,

and its disadvantages. Section 6.4 discusses the property of the checksum algorithm needed

by the detection mechanisms. Section 6.5 discusses other assumptions made in the project.

- Page 16 -

6.1 Network Interface

The network interface is where L2000 clients request services from a replica. The interface is

also used by the replication service in two ways. First, the other replicas need to use the

interface to check and retrieve the data on the replica for repair. Second, the RIC uses the

interface to check for data divergence among the replicas. All users of the interface—the

replication service mechanisms and the clients—are assumed to talk to the interface through a

communication protocol such as TCP/IP.

Table 4 lists the primitives required to support the replication service. Note that UID is the

unique identifier used to uniquely identify documents stored on the L2000 system.

Primitives Descriptions

get(UID) Get the data identified by the UID

cksum(UID) Calculate and return the checksum of the data identified by the UID

getcksumrecord() Get the checksum file last produced by the LIC.

Table 4: Network Interface Primitives

For the replication service, replicas need “get” to retrieve good data so damaged data can be

repaired. The RIC needs “getcksumrecord” to retrieve the checksum file, as will be discussed

in section 7, needed to find state differences among the replicas. The voting procedure, used

by both the LIC and the RIC, uses “cksum” to check for the existence and to get the checksum

calculation of a UID.

For client services, clients need “get” to retrieve the data on the replica. They might also need

“cksum” to check if the transmission of data started by “get” is uncorrupted. There might be

other unmentioned primitives that the clients need. For example, since the clients are external

users of the server resources, the network interface might need to check if the clients are

authorized users of the resources. Note that the project does not try to identify all the primitives

needed by the L2000 clients.

- Page 17 -

6.2 Replica Interface

The replica interface’s primary function is to translate a UID into a data location, e.g., file

system and path name. Also, since the replica interface supports the network interface, the

replica interface must support all the primitives listed in Table 4. However, since the replica

interface is assumed to be used by the users internal to the replica, it does not need to support

all the functionalities supported by the network interface. For example, it does not need to

check if the users of the interface are authorized users.

Besides supporting the network interface’s primitives, the replica interface must support

primitives that the LIC requires. The LIC needs the enumeration of all UIDs and their

associated checksums; the functionality is supported by “enum&cksum.” Also, the system’s

checksum file must be updated when there are valid changes to the system. Hence,

“putcksum” allows the system’s checksum file to be replaced. Table 5 shows the replica

interface’s primitives.

Primitives Descriptions

get(UID) Get the data identified by the UID

cksum(UID) Calculate and return the checksum of the data identified by the UID

getcksumrecord() Get the checksum file last produced by the LIC.

enum&cksum() Enumerate all UIDs and calculate their checksums

putcksum(data) Replace the system’s checksum file with a supplied data

Table 5: Replica Interface Primitives

6.3 UID to Location Translation Table (ULTT)

What is a UID in the L2000 system? A UID is the token used to uniquely and universally

identify a document stored on the L2000 systems and related electronic library systems

[Library2000-1]. The UID is a result of the need to identify documents uniquely and universally

across multiple library systems.

In today’s system, data is stored using file systems. Hence, UID needs to be translated into the

location of the data. Table 6 shows the structure of the UID-Location Translation Table (ULTT)

- Page 18 -

and a sample entry of the table. Note that the real entry of the L2000 system might not look like

the sample entry in the table. For example, the location of the data needs to include a server’s

name (one of the twenty servers in a replica), a file system’s name, and the file’s path name.

UID Location Other Information

102456798 /afs/athena.mit.edu/user/k/o/kom/.cshrc File’s ACL, Entry’s

checksum, etc.

Table 6: UID-Location Translation Table And a Sample Entry

The advantages and the disadvantages of using a ULTT are discussed in the following

subsections.

6.3.1 Advantages of Using a ULTT

There are two main advantages of using a ULTT:

• Flexibility of replica management

• Abstraction used by the integrity checkers

The first advantage of using a ULTT—flexibility of replica management—is a classical

advantage of using an indirection table. The file system and virtual memory system all use

indirection tables that allow the systems to relocate, hide the internal representations of, and

control the access to system resources without the user’s explicit awareness.

With a ULTT, the replica can relocate the location of its data without letting the client of the

interfaces know. The replica also hides how the data is represented in the system. For

example, a replica might keep its documents using the UNIX file system, while another replica

might use a new object-oriented file system.

The ULTT is also a logical place to store information that are associated with the UIDs. For

example, the replicas may need to associate with the documents ACLs of the documents.

The second advantage of using a ULTT is the integrity checkers now can deal with the

documents as an abstract object rather than as files. If the documents have to be treated as

- Page 19 -

files, the checkers would need to store the locations of the files—the way files are uniquely

identified—in the checksum file. For example, they will need to store the servers’ names, the

file systems’ names, and the files’ path names to be able to identify the data. The checkers

might also need to check the integrity of the objects used as parts of the locations, e.g., the

inodes in the file systems.

Moreover, since the checksum files used by the detection mechanisms are exchanged among

the replicas, the files must have similar entries so the files can be compared. If the file names

are used instead of UIDs, the replicas must have exactly the same configurations: they must

have the same servers’ names, the same file systems’ names, the same files’ path names, etc.

The replicas’ management must be tightly coordinated and thus, is cumbersome and

inconvenient.

6.3.2 Disadvantages of ULTT

The ULTTs of the replicas might not be the same. For example, if the replicas have different

servers’ names, then the ULTT entries, which map the UIDs to the file locations which servers’

names are part of, must be different. Hence, another replica cannot provide a local replica with

a good copy of ULTT if the local replica’s ULTT is corrupted. There is no redundant information

to fix the corruption.

There are at least two ways this problem can be dealt with:

• Provide redundancy for the replica’s ULTT

• Treat the corruption of a ULTT entry as a fault and correct it appropriately

The first approach requires that multiple copies of the ULTT are kept on a replica. Care should

be taken to minimize the common failure modes of the copies. For example, the copies should

be stored on different servers within the replica. When a corrupted entry is found, redundant

entries can be used to repair the damage.

The second approach treats a corrupted ULTT entry as a corruption of the document

associated to the ULTT entry. The corruption is repaired by retrieving a redundant document

from another replica, and by overwriting, if possible, the corrupted ULTT entry.

- Page 20 -

In the second approach, note that if a ULTT entry consists of only a UID and a location, the

proposed detection mechanisms will detect an entry corruption. A corrupted entry means the

mapping from the entry’s UID to the data location is incorrect. Therefore, the data identified by

the UID will be incorrect, or a valid UID will disappear, or an invalid UID will appear. Hence, the

detection mechanisms, which verify the replica’s data using the UID mapping, would detect the

corruption. If an entry consists of other information not related to location mapping, such as an

ACL, the entry needs to contain the checksum of the information so that the corruption of the

information can be detected.

In this project, the second approach is assumed. Note that taking the second approach

increases the failure rate of the data since a corruption to the table entry is considered a failure

of the associated data. This point was discussed earlier in section 5.1.

6.4 Property of Checksum Algorithm

In the project, the detection mechanisms treat the checksum values as the pseudo contents of

the file: the checksums of the files are used for comparison rather than the files’ contents.

Hence, the checksum algorithm should have a property as follows. The probability of having

files with different contents being mapped to the same checksum value, as shown in Figure 5,

is very low.

. . .

. . .

. . .

C h e c k s u m V a lu e S p a c eF i le C o n t e n t s S p a c e

B

A

Figure 5: Mapping From File Contents to a Checksum Value

6.5 Other Assumptions

This section describes two assumptions made to ease the synthesis and the analysis of the

detection scheme.

- Page 21 -

The first assumption is, the network used by the replicas does not partition. The detection

mechanisms do not have to deal with being unable to talk to other replicas because of a

network partition.

The second assumption is, although the replicas can sometimes be down, the occurrence is so

rare that the replicas will always be able to talk to one another. This assumption again

simplifies the detection scheme: the detection mechanisms do not have to deal with being

unable to talk to other replicas.

7. Detection Scheme

Given the ULTT discussed in section 6.3, the detection scheme does not have to treat L2000

documents as files. However, since the implementation done in this project uses path names

as UIDs, it is helpful to discuss UIDs as if they were files. Hence, the discussions from here on

talk about files instead of UIDs. The reader should keep in mind that the files’ path names are

really the documents’ UIDs.

By the fault model discussed in section 5.1, the detection scheme must detect illegitimate

changes applied to the replicas’ data: bit corruption, file addition, and file deletion. By the

change model discussed in section 5.3, the scheme must also detect legitimate changes

applied to the replicas knowing that sometimes the changes are not applied to all replicas. To

detect the changes—both legitimate and illegitimate—two mechanisms are used: local integrity

checker (LIC) and remote integrity checker (RIC).

The LIC checks for illegitimate changes (faults) occurring on a replica by comparing the

replica’s states captured at two time points. It is discussed in section 7.1. The RIC checks for

legitimate changes not applied to all the replicas by comparing the checksum files of two

replicas. It is discussed in section 7.2. Section 7.3 portrays another view of the detection

scheme.

- Page 22 -

7.1 Local Integrity Checker (LIC)

The LIC detects faults that occur on a replica between two time points. The LIC does three

things:

• detects changes that are applied to a replica’s data between two time points

• checks if the detected changes are legitimate

• reports all and only illegitimate changes applied to the replica

The general idea is as follows. Every TLOCAL minutes, the checker generates a checksum file FN+1

collecting the UIDs identifying all the documents stored on a replica and collecting their

associated checksums. The checker then compares FN+1 with the checksum file FN, the

checksum file that was generated and validated in the previous period N. Since FN reflects the

replica’s state at the period N, the differences FN+1 has from FN must be the changes applied to

the replica’s data during N and N+1. Since the changes can be either legitimate or illegitimate,

the checker checks for the legitimacy by conferring with other replicas. Once the legitimacy of

the changes is determined, the LIC reports all and only the illegitimate changes (faults).

The checker follows two steps. First, it generates the local difference report listing the changes

applied to the replica’s data between periods N and N+1. How the report is generated is

detailed in section 7.1.1. Second, the checker checks if the changes are legitimate by

confirming the changes with other replicas. How the changes are confirmed is detailed in

section 7.1.2. The faults detected by the LIC should be repaired. Section 7.1.3 suggests how

the faults should be repaired.

7.1.1 Local Difference Report

The local difference report lists the changes applied to a replica’s data during the periods N and

N+1. The report can be generated in the following way.

Every TLOCAL minutes, the checker

1. calculates the checksums of all files on the replica, and saves the files’ names and

checksums to a “checksum” file FN+1

2. calculates and records the checksum of FN+1 so FN+1’s corruption can be detected.

- Page 23 -

3. appends to FN+1 the finishing time (Greenwich Mean Time)

4. calculates the checksum of the previous checksum file FN, excluding the timestamp, and

compares the calculated checksum with FN’s recorded checksum. If the checksums

mismatch, FN has been corrupted; a flag is raised and the checker stops. If the checksums

match, FN is good and the checker continues.

5. compares FN+1 with FN and generates the differences listing the deleted files, the added files,

and the changed files as shown in Table 7.

Previous Checksum File Current Checksum File Inconsistencies

Has file F Does not have file F F has been deleted

Does not have File F Has F F has been added

File F has checksum CN File F has checksum CN+1 F has been changed

Table 7: Changes Listed by Local Difference Report

In this step, the LIC discovers all changes that were applied to the replica since last checking

period. We cannot tell if the detected changes are legitimate or illegitimate. The confirmation

through voting, discussed in the next section, checks for changes’ legitimacy.

7.1.2 LIC Confirmation through voting

Because the changes that are applied to a replica can be either legitimate or illegitimate, the

changes listed in the local difference report should be categorized by their legitimacy. The

changes’ legitimacy is determined by having the replicas vote on the changes. If the replica

majority has the changes, then the changes are legitimate. Otherwise, the changes are faults

that should be repaired.

This step deletes from the local difference report all legitimate changes. The final output of the

LIC lists all and only illegitimate changes that occurred on the replica between the periods N

and N+1. The checker follows the following steps:

for each change listed in the local difference report

1. asks all the replicas for the status of the change

- Page 24 -

2. if the replica majority has the change, the change is legitimate and its entry is deleted from

the local difference report. Otherwise, the change is a fault and its entry stays in the report.

After the above steps, the remaining entries of the local difference report are faults that

occurred on the system. The LIC returns this report.

Table 8 shows the conditions that each detected change must have to be confirmed as a fault.

For example, in the replica group ABC, if the local difference report on A lists the file F as

having been deleted, and either B or C does not have F, then the majority of the replicas (AB,

or AC) agrees that F does not exist. F has been deleted from the replicas; A does not need to

fix F’s deletion.

Cases Majority State Change Cases Action

File F deleted Has F Deletion Fault Confirmed as deleted

File F deleted Does not have F Deletion Change Deleted from report

File F added Has F Addition Change Deleted from report

File F added Does not have F Addition Fault Confirmed as added

File F changed F’s checksum is

CN+1

Update Change Deleted from report

File F changed F’s checksum is

CN

Change Fault Confirmed as changed

File F changed No-majority state. Change Fault File F added to a

“possibly

irrecoverable” report

Table 8: Conditions for Changes to be Confirmed as Faults

Note that file existence is a boolean value; it cannot be ambiguous: a replica either has a file or

it does not. So file existence always has a majority state. On the other hand, checksum value

is a multi-value number and can be ambiguous. It is possible that there is no replica majority

agreeing on the same checksum value. Hence, checksum values can have no-majority states.

A no-majority state cannot be tolerated because having it implies that enough faults have

occurred to push the replicas’ state over the threshold of recoverability.

- Page 25 -

To calculate if there is a majority, Equation 2 is used. n is the total number of replicas.

_ _ _of agreeing replicas
n≥ +



2

1

Equation 2: Majority Equation

All legitimate changes detected by the LIC are changes that were applied to the replica being

checked. If the changes were applied to the replica majority but not the replica being checked,

the LIC will not detect the changes. Hence, we need another mechanism, remote integrity

checker, to deal with the situation. The remote integrity checker is discussed in section 7.2.

7.1.3 LIC Repair Model

This subsection suggests how the faults reported by the LIC should be repaired.

The aim of the repair is as follows. After the local replica is repaired, the replica should have

the state that is reflected by FN, the validated checksum file of the last period, plus the detected

legitimate changes. Figure 6 shows the state progression of a replica when there are changes

applied to the replica. During the periods N and N+1, legitimate and illegitimate changes are

introduced into the replica. At N+1, the LIC detects the changes and creates a repair order

listing the illegitimate changes. After the repair mechanism is run, the state of the replica is as

shown in the figure’s last box—a state identical to the state at N plus the legitimate changes

introduced during N and N+1.

Legitimate
Changes

Corruptions

Legitimate
Changes

Corruptions

N+1
After

Repair

N+1
Before
Repair

N

Figure 6: Replica’s State Progression With Legitimate Changes and Corruptions.

- Page 26 -

Note that not only the faulty data need to be repaired, the checksum file must also be updated

to reflect the legitimate changes. This is so that when the LIC checks for changes in the next

period, all legitimate changes already detected will not be seen as changes. Table 9 lists the

cases and the fixes. The most interesting case listed in the table is the first—when FN is

corrupted or deleted. We will analyze why the suggested fix works in section 8.2.3.

Cases Suggested Fix

FN is corrupted or deleted A validated checksum file is retrieved from

another replica and used as the validated

checksum file, then the algorithm is rerun.

A reported change is

confirmed by majority state

The change is incorporated into FN which is

used as the next validated checksum file.

A reported change is not

confirmed by majority state

The change is eliminated by getting redundant

data from other replicas or by deleting the

change. FN is used as the next validated

checksum file

Table 9: Fixes Needed For Faults Reported by Local Integrity Checker

7.2 Remote Integrity Checker (RIC)

The RIC checks for the divergence of replicas’ data from the replica majority. A replica’s data

can diverge because the replica might not have the changes that other replicas do. This can

happen because valid changes might not be applied to all the replicas.

The remote integrity checker does three things:

• detects differences of the local replica’s checksum file and a partner replica’s

• determines from the differences which replica has the most recent change and which replica

does not

• produces the repair list for the replicas that need to get changes

The RIC’s algorithm is similar to the LIC’s except that the checksum files being checked belong

to two replicas. The general idea is as follows. Every TREMOTE minutes, the checker on the local

- Page 27 -

replica A randomly picks a partner replica B and retrieves from B B’s most recent checksum file

FB. The checker then compares FB with A’s most recent checksum file FA. The differences

between FA and FB are changes that need to be applied to either A or B. By having the replicas

vote on the differences, the replicas that need to be updated can be determined.

The checker follows two steps. First, it generates the remote difference report listing the

differences that the two checksum files have. How the report is generated is discussed in

section 7.2.1. Second, the checker determines—by conferring with other replicas—which of

the two replicas being checked needs to be updated. How the differences are confirmed by

other replicas is discussed in section 7.2.2. Section 7.2.3 suggests how the detected changes

should be applied to the replicas.

7.2.1 Remote Difference Report

The remote difference report lists the differences of the replicas’ checksum files. The report is

generated as follows.

Every TREMOTE minutes, the checker process:

1. Retrieves the latest checksum file FA of the local replica A

2. Checks the timestamp and the checksum of FA. If FA is older than TLOCAL minutes, or if FA’s

checksum does not match its recorded checksum, a flag is raised and the check is

terminated; otherwise, the check is continued.

3. Randomly picks a partner replica B and retrieves its most recent checksum file FB.

4. Checks the timestamp and the checksum of FB. If FB is older than TLOCAL minutes, or if FB’s

checksum does not match its recorded checksum, a flag is raised and the check is

terminated; otherwise, the check is continued.

5. Generates the differences between FA and FB.

Table 10 shows all the difference cases

- Page 28 -

Replica A Replica B Difference

Code

Has file F Does not have file F IR1

Does not have File F Has F IR2

File F has checksum CA File F has checksum CB IR3

Table 10: Differences Listed by Remote Difference Report

Note that each difference detected in this step can be one of the followings:

• change applied to A but not B

• change applied to B but not A

The cases cannot be differentiated without conferring with other replicas. Hence, the next step,

confirmation through voting, is needed.

7.2.2 RIC Confirmation through voting

Each difference listed in the remote difference report can be one of the following categories:

• change applied to A but not B

• change applied to B but not A

By having the replicas vote on a difference, the difference can be categorized.

The final output of the RIC lists all the changes that A needs, and all the changes that B needs.

The checker follows the following steps:

for each difference listed in the remote difference report

1. asks all the replicas for the status of the difference

2. categorize each difference as listed in Table 11

Table 11 shows how the detected differences are categorized. For example, if replica A has a

file F, replica B does not, and the majority of the replicas does, then a missing file entry is

generated for replica B. As already discussed in section 7.1.2, it is possible to have a no-

majority state.

- Page 29 -

Difference

Type

Majority State Replica

Needing

Update

Category

IR1 Has F B Missing File

IR1 Does not have F A Added File

IR2 Has F A Missing File

IR2 Does not have F B Added File

IR3 File F has checksum CB A Changed File

IR3 File F has checksum CA B Changed File

IR3 No majority state At least

one

F might be irrecoverable

Table 11: Categories of the Detected Differences

Note that changes are propagated to the replicas through the normal repair mechanism.

Hence, the repair order generated for the legitimate changes detected by the RIC looks like a

repair order generated for illegitimate changes. The repair mechanism follows the same steps

to fix illegitimate changes and to propagate legitimate changes.

7.2.3 RIC Repair Model

This subsection suggests how legitimate changes are propagated to the replicas using the

information generated by the RIC.

The aim of the repair is as follows. After the two replicas are repaired, they should have the

changes that were on the other replica but were not originally on the replica.

For example, Figure 7 shows a replica group ABC. When change1 and change2 are applied to

the replicas, change1 is applied to A and C, and change2 to B and C. Then A’s RIC picks B to

compare their states. After confirming the checksum files’ differences with ABC, the RIC

reports that B has change2 which A should get and A has change1 which B should get. After

the repair mechanism is run, AB both have change1 and change2.

- Page 30 -

Change 1
Change 2Change 2

Change 1

Change 1
Change 2

Change 1
Change 2

Change 1
Change 2

Replica CReplica BReplica A

After Repair

Before Repair

Figure 7: Progress of Replicas’ States

Table 12 lists the cases and their fixes. The most interesting case listed in the table is the

first—when the checksum file is corrupted or deleted. We will analyze why the suggested fix

works in section 8.1.3. Note that A’s and B’s validated checksum files do not have to be

updated in this case: the task of updating the checksum files can be delegated to A’s and B’s

LICs.

Replicas Conditions Suggested Fix

Either Checksum file is

corrupted

Do not fix anything; let the LIC handle

it

Either Changes that was

not originally applied

to either replica

The changes are retrieved and

applied to the replica.

Table 12: Fixes Needed For Changes Reported by the RIC

7.3 Another View of the Detection Scheme

The above discussion describes what the LIC and RIC do to detect changes in the system.

What is not explicitly described is how the LIC and the RIC are related to the replicated system,

the fault model, and the change model. The discussion in this section will alleviate that.

The proposed detection scheme detects the divergence of the replicas’ data from the view of

what the system’s data should be. We have categorized the divergence: illegitimate changes

and legitimate changes. According to the fault model, the divergence caused by illegitimate

changes happens because of the disk characteristic. According to the change model, the

- Page 31 -

divergence caused by legitimate changes happens because the replicas do not have a single

view of the legitimate changes: the changes might not be applied to all replicas.

What is the system’s view—the view that sees all and only the valid data in the system—in our

model? In our model, the system’s view is all the data that can be confirmed by the majority of

the replicas—confirmed by referring to the real data and not the checksum files’ entries. For file

existence, only files that exist on the replica majority are valid system data; files that do not

exist on the replica majority, but might exist on some replicas, do not belong to the system’s

data. For file contents, contents whose value is agreed on by the replica majority is the

system’s file contents. The values of contents that do not agree with the majority are

divergence.

How are the checksum files on the replicas related to the system’s view? In the static system,

the checksum files on the replicas are identical to the system view.

In the dynamic system, the checksum files on the replicas are subsets of the system’s view.

Why are they subsets of the system’s view? When a replica’s checksum file is refreshed by an

LIC, the checksum file contains all past (correct) history of the replica’s data up to the

refreshing point—without the legitimate changes that are applied to other replicas. The system

view, however, has all past history of the replicas with all legitimate changes to the system.

Hence, the checksum files are subsets of the system view.

Table 13 shows the system view and the checksum files as “sets.” Note that putting deletion

and update into the sets are dependent on the existence of prior addition: a file cannot be

deleted or updated unless it exists.

Set Descriptions Explanation

V System’s View

V+AddUID1 Updated system view with file addition

V+DelUID1 Updated system view with file deletion

V+UpdateUID1 Updated system view with file update

CHECKSUMA Replica A’s checksum file

- Page 32 -

CHECKSUMA+ AddUID1 Updated A’s checksum file with file addition

CHECKSUMA+ DelUID1 Updated A’s checksum file with file deletion

CHECKSUMA+ UpdateUID1 Updated A’s checksum file with file update

Table 13: System’s View and Checksum File as Sets

The LIC and the RIC use checksum files to detect changes on the replicas. However, the

checksum files are subsets of the dynamic system’s view. Hence, in the dynamic system,

differences or changes detected by the LIC and RIC must be confirmed with the system’s

view—by confirming with majority state of the replicas.

8. Analysis

The objectives of the analysis in this section are to show that the synthesized scheme detects

two types of occurrences:

• all faults occurring in the fault models as discussed in section 5

• all legitimate changes discussed in the change model also in section 5

The analysis has two parts. One is for the static system, and the other for the dynamic system.

Although the L2000 system is dynamic, the static system is analyzed because the analysis is

simpler and a part of the analysis applies to the dynamic system.

The are two types of changes. Legitimate changes—which happen only in the dynamic

system—include file addition, file deletion, and file update. Table 14 lists the faults, or

illegitimate changes, that occur in both the static and the dynamic systems. E1 is when a

replica’s data file disappears. E2 is when a file is added to the replica. E3 is when a data file’s

contents is changed illegitimately. E4 is a special case of E1—the checksum file that captures

a correct state of the replica disappears. E5 and E6 are when the contents of the checksum file

is updated.

- Page 33 -

Events Explanations

E1 Missing file

E2 Added file

E3 Changed file

E4 Checksum file missing

E5 Checksum file updated inconsistently.

E6 Checksum file updated consistently.

Table 14: Fault Scenarios

What is the difference between E5 and E6? Remember that when the LIC finishes recording

the replica’s UIDs and their checksums to a checksum file, it also records the checksum of the

checksum file. If the checksum file is changed and the recorded checksum is not, then when

the file’s checksum is recomputed, the recomputed checksum will not match the recorded

checksum, and vice versa. This is an “inconsistent” change. The “consistent” change is when

the checksum file and the recorded checksum are both changed, and the recorded checksum is

changed in such a way that the recomputed checksum matches the recorded checksum.

We first discuss the static system and follow with the dynamic system.

8.1 Static System

All changes to the data are illegitimate in the static system. Hence, all changes to the data—

file’s contents change, file disappearance, file appearance—all need to be detected and

recognized as faults.

We claim that the local integrity check—without the confirmation through voting—will detect all

faults. We first discuss why the detection scheme works for events E1, E2, and E3 in section

8.1.1. We then discuss E4 and E5 in 8.1.2, and then finish with E6 in 8.1.3. We will conclude

this subsection in 8.1.4 with three general observations: why confirmation through voting is

unneeded in the static system, why the RIC is unneeded in the static system, and how the

checksum file can always be correct if it too can be corrupted or deleted.

- Page 34 -

8.1.1 E1, E2, and E3

In the cases of E1, E2, and E3, we assume that all the checksum files done in the 1st period

through the Nth—F1 through FN—are correct. Also, there are no faults in the system in those

periods, or else the occurring faults are repaired as discussed in section 7.1.3. The checksum

file done in the previous period is the Nth checksum file FN. The checksum file done in the

current period is the (N+1)th checksum file FN+1. If there are differences between FN and FN+1,

the changes to the storage system’s state must account for the differences since FN reflects the

previous system’s state.

All changes in the static system are faults and therefore, the detected changes can only be E1,

E2, or E3. As listed in Table 7, E1, E2, and E3 would obviously be detected if FN is correct.

In the above discussion, we assume that F1 through FN are correct; operationally, how can this

assumption be true? The critical assumption here is that F1 is correct. We justify the

assumption by saying that we want to ensure that the initial state of the system does not

change throughout the system’s lifetime. The initial state must be correct by definition, and F1 is

a part of the initial state; hence, F1 is correct.

We can easily verify that F2 through FN are correct: they must be equal to F1. If we calculate

F1’s checksum and record it, when we compare F2 through FN to F1, we know that the real F1 is

being used because we can detect changes in F1 by recomputing F1’s checksum and comparing

the checksum with F1’s recorded checksum. If we know that FN is correct, then when we

compare FN to FN+1, the difference must be the changes done to the replica’s files.

8.1.2 E4 and E5

For E4 and E5, the correctness of the detection mechanism is clearer. The local detection does

not work if the checksum file was deleted; therefore, E4 will obviously be detected. Since we

record the checksum of the checksum file, E5 is detected: the checksum of the changed

checksum file is different from the checksum of the original checksum file.

8.1.3 E6

A checksum file can be changed consistently in two ways:

- Page 35 -

• the file bits and the recorded checksum are updated consistently

• outdated but consistent checksum file replaces the current checksum file.

In the first case, we assume that the checksum algorithm is good enough, as discussed in

section 6.4, that the probability of the bits and the recorded checksum being changed

simultaneously and consistently is so low that we can ignore it.

In the second case, E6 is not a problem in the static system. Figure 2 shows the progress of

the replica’s state. If the system is static, and all faults on the system are repaired properly,

then the checksum data should be the same from period 1 through period N. Hence, it does

not matter which of the previous period’s checksum file replaces the stored checksum file. The

checksum files are identical.

8.1.4 Observations

There are three observations: why confirmation through voting is unneeded in the static system,

why the RIC is unneeded in the static system, and how the checksum file can always be correct

if it too can be corrupted or deleted.

The first observation is, in the static system, it is sufficient for the LIC to stop after generating

the local difference report: confirmation through voting is unneeded. This is because, as

discussed in section 7.1.2, confirmation through voting is a mechanism used to differentiate

faults in the system from the legitimate changes. Since static system does not have legitimate

changes, all changes listed in the local difference report are illegitimate. Therefore, the

reported changes do no need to be confirmed by the replica majority.

The second observation is, it is unnecessary to run the LIC as daemons in the static system.

This is because the LIC’s function is to detect the legitimate changes not applied to all the

replicas. In the static system, there is no legitimate changes, and therefore, the LIC is

unneeded.

The third observation is, the LIC’s correctness heavily depends on the checksum file being

correct. So how can we make sure that the checksum file is always correct when it too can be

corrupted or deleted? As suggested in section 7.1.3, when the checksum file of a replica is

- Page 36 -

corrupted, another replica’s checksum file is retrieved to replace the corrupted checksum file.

Since the system is static, and all the validated checksum files have the same view—the

system view, all replicas’ checksum files are identical. So the corruption or the deletion of a

replica’s checksum file does not effect the integrity checkers’ correctness because replacing the

checksum file and running the LIC on the replacement file restores the checksum file to the

correct state.

8.2 Dynamic System

What has changed in the dynamic system from the static system? The files that are added,

deleted, or changed now may be legitimate changes to the system. Also, legitimate changes to

the system might not be reflected by all the replicas.

What are the implications of the changes? There are three. First, we can no longer take the

output of the check as in the static system—local integrity check without confirmation through

voting—as the correct repair list. The changes might be legitimate: the files were added,

deleted, or changed deliberately. The local difference report needs to be confirmed with other

replicas, i.e., by confirmation through voting. Second, because the checksum files are not the

same through all the periods, without confirmation through voting, previous checksum file

replacing the current checksum file is a problem: the local difference report might generate

inaccurate repair list. Finally, we now need to employ the RIC to check for changes that are not

reflected by all the replicas.

In the following subsections, the LIC and the RIC will be discussed in the context of the

dynamic system in sections 8.2.1 and 8.2.2 respectively. Section 8.2.3 offers an observation of

why the corruption or the deletion of the validated checksum file is handled properly in the

dynamic system. Section 8.2.4 offers case by case analysis of fault detection in the dynamic

system.

8.2.1 Local Integrity Check

As in the static system, we claim that the LIC’s local difference report contains all changes that

occur during the last checking period N and the current checking period N+1. The argument is

the same as in the static system which was discussed in section 8.1.1.

- Page 37 -

In the static system, all changes listed in the local difference report are illegitimate: the static

system does not allow changes. However, the changes in the dynamic system can be

illegitimate or legitimate. Therefore, the changes in the report must be checked for legitimacy

through confirmation through voting. Table 8 lists the cases how the changes are confirmed.

Because a replica majority represents the system view, it is obvious that the legitimacy of the

changes can be determined by voting except in the case of no-majority state. We do not

consider the no-majority state because it is an intolerable event. Thus, LIC’s report lists all and

only faults that occurred on the replica during N and N+1 periods: E1, E2, and E3 are detected.

As in the static system discussed in 8.1.2, E4 and E5 are detected.

In the static system, E6 does not cause a problem because all periods’ checksum files are the

same. In the dynamic system, the checksum files are not the same: they cannot be because

the system’s data change. Hence, if an outdated checksum file is used in a comparison, the

local difference report will list changes that are valid on the replica but were not listed in the

outdated checksum file as part of the replica’s data. However, when the changes are confirmed

with the replica majority, all legitimate changes will be categorized as legitimate changes and all

illegitimate changes as faults. Therefore, although the LIC does not explicitly detect E6, E6

does not cause the LIC to generate an inaccurate repair list.

Another way to view why E6 is handled correctly requires a reference to section 7.3. All

validated checksum files—checksum files that do not incorporate faults as all the replicas’

checksum files used by the LICs and the RICs are—are subsets of the current system view.

Hence, when an old validated checksum file is used in comparison, the local difference report

will list all legitimate and illegitimate changes that occurred on the replica since the time the

checksum file was validated. No illegitimate changes can escape the detection because the

validated checksum file only contains legitimate data. When the changes are verified with the

system view by conferring with other replicas, the changes’ legitimacy will be categorized

correctly since the majority view—the system view—reflects the true state of the system.

Hence, illegitimate changes—E1, E2, and E3—are the only changes listed by the LIC in the

dynamic system.

- Page 38 -

8.2.2 Remote Integrity Check

The RIC checks for the data divergence of a replica from the replica majority by comparing

replicas’ checksum files. Why is it that the RIC will check for all changes that are not applied to

all the replicas?

As discussed in section 7.3, the checksum files on the replicas are subsets of the system view.

If the system remains static after a change, the union of the validated checksum files on all

replicas becomes the system view because the LICs updates the checksum files using the data

that reflects the system’s view. Hence, when an RIC detects differences of a replica’s

checksum file from other replicas’ and the repair mechanism updates the checksum file with the

appropriate changes, the checksum file will eventually reach the system view—given that the

system view has not changed since the change. Hence the RIC will eventually detect all

changes that were applied to other replicas but not to the local replica.

8.2.3 Observation

A dynamic replica relies on the LIC to detect all faults occurring on the replica, and the RIC to

detect legitimate changes that are not applied on the replica. The LIC and the RIC both rely on

the correctness of the replica’s checksum file, so how can the checksum file be always correct if

it too can be corrupted or deleted?

In the static system, when a replica’s corrupted checksum file is replaced with another replica’s

validated checksum file, it is not a problem since all validated checksum files are the same. In

the dynamic system, the checksum files of different replicas might not be the same because

changes might not be applied to all the replicas: some replicas’ views will be closer to the

system view than the others. Hence, replacing the corrupted checksum file with another

replica’s validated checksum file does not achieve the same effect as in the static system.

To argue that replacing a corrupted checksum file with another replica’s validated checksum file

is correct, we again refer to section 7.3. All validated checksum files on the replicas are

subsets of the system’s view. When another replica’s checksum file replaces the local replica’s

checksum file, the replacement file does not include any faults: faults are not part of the system

view and all validated checksum files are subsets of the system view. Hence, the LIC will

- Page 39 -

detect all faults as long as the checksum file used for comparison is a subset of the system

view. With the replacement checksum file, the LIC will again bring the checksum file in sync

with the replica’s view of the data.

8.2.4 Case by Case Analysis

The above analysis discusses the cases in abstract: details are grossed over. In this section, a

few samples where faults occur on the system, or where changes are applied to the system, will

be discussed. Readers who have already understood the detection scheme might want to skip

over this section.

8.2.4.1 Faults on a Replica

This is the case where addition, deletion, or update faults occur on a replica. We start with an

addition fault, follow with a deletion fault, and finish with an update fault. In all cases, we

suppose that the events happen on the replica group ABC.

In the addition case, we suppose that a file D illegitimately appears on the replica A during the

periods N and N+1. When A’s LIC generates the checksum file FN+1, FN+1 will have D as an

entry. Therefore, when the LIC compares the previous checksum file FN with FN+1, the addition

of D will be detected because FN does not have D. When the LIC confers with other replicas

about D, it will determine that D’s addition is illegitimate because only A has D. The repair

mechanism then will eliminate D. FN, with the updated time stamp, is used as the next validated

checksum file.

In the deletion case, events symmetric to those in the addition case happen. We suppose that

a file D illegitimately disappears from the replica A during the periods N and N+1. When A’s

LIC generates the checksum file FN+1, FN+1 will not have D as an entry. Therefore, when the LIC

compares the previous checksum file FN with FN+1, the deletion of D will be detected because FN

has D. When the LIC confers with other replicas about D, it will determine that D’s deletion is

illegitimate because the replica majority has D. The repair mechanism then will reinsert a good

copy of D using a copy from another replica. FN, with the updated time stamp, is used as the

next validated checksum file.

- Page 40 -

In the file change case, we suppose that a file D’s contents is illegitimately updated on the

replica A during the periods N and N+1. When A’s LIC generates the checksum file FN+1, D of

FN+1 will have a different checksum than D of FN. Therefore, when the LIC compares the

previous checksum file FN with FN+1, the update of D will be detected. When the LIC confers

with other replicas about D, it will determine that D’s contents reflected in FN+1 is illegitimate

because the replica majority’s D has the same checksum as D in FN. The repair mechanism

then will replace D with a good copy of D from another replica. FN, with the updated time

stamp, is used as the next validated checksum file.

8.2.4.2 Changes Reflected on a Replica

This is the case where addition, deletion, or update changes occur on a replica. We start with

an addition change, follow with a deletion change, and finish with an update change. In all

cases, we suppose that the events happen on the replica group ABC.

In the addition case, we suppose that a file D is legitimately created on the replicas A and B

during the periods N and N+1. When A’s LIC generates the checksum file FN+1, FN+1 will have D

as an entry. Therefore, when the LIC compares the previous checksum file FN with FN+1, the

addition of D will be detected because FN does not have D. When the LIC confers with other

replicas about D, it will determine that D’s addition is legitimate because A and B have D. The

repair mechanism then will incorporate D into FN’s entry and updates FN’s timestamp. The

updated FN is used as the next validated checksum file.

In the deletion case, we suppose that a file D is legitimately deleted from the replicas A and B

during the periods N and N+1. When A’s LIC generates the checksum file FN+1, FN+1 will not

have D as an entry. Therefore, when the LIC compares the previous checksum file FN with FN+1,

the deletion of D will be detected because FN has D. When the LIC confers with other replicas

about D, it will determine that D’s deletion is legitimate because A and B do not have D. The

repair mechanism then will strike D’s entry from FN and updates FN’s timestamp. The updated

FN is the next validated checksum file.

In the file change case, we suppose that a file D’s contents is legitimately updated on replicas A

and B during the periods N and N+1. When A’s LIC generates the checksum file FN+1, D of FN+1

will have a different checksum than D of FN. Therefore, when the LIC compares the previous

- Page 41 -

checksum file FN with FN+1, the update of D will be detected. When the LIC confers with other

replicas about D, it will determine that D’s contents reflected in FN+1 is legitimate because the

replica majority’s D has the same checksum as D in FN+1. The repair mechanism then will

update D’s entry in FN with the new checksum and updates FN’s timestamp. The updated FN is

used as the next validated checksum file.

8.2.4.3 Changes not Reflected on a Replica

This is the case where addition, deletion, or update changes occur on other replicas but not on

the local replica. We start with an addition change, follow with a deletion change, and finish

with an update change. In all cases, we suppose that the events happen on the replica group

ABC.

In the addition case, we suppose that a file D is legitimately created on the replicas B and C.

A’s LIC does not detect the addition because D is not on A. When A’s RIC picks B as the

partner and compare A’s and B’s checksum files, the difference with D is detected because B’s

checksum file has D but A’s does not. When the RIC confers with other replicas about D, it will

determine that D’s addition is legitimate because B and C have D. The repair mechanism then

will put D on A using D from B or C. When A’s LIC runs next time, D’s entry will be incorporated

into A’s validated checksum file.

In the deletion case, we suppose that a file D is legitimately deleted from the replicas B and C.

A’s LIC does not detect the addition because D is still on A. When A’s RIC picks B as the

partner and compare A’s and B’s checksum files, the difference with D is detected because B’s

checksum file does not have D but A’s does. When the RIC confers with other replicas about

D, it will determine that D’s deletion is legitimate because B and C do not have D. The repair

mechanism then will delete D from A. When A’s LIC runs next time, D’s entry will be deleted

from A’s validated checksum file.

In the change case, we suppose that a file D is legitimately changed on the replicas B and C.

A’s LIC does not detect the addition because D is still the same on A. When A’s RIC picks B as

the partner and compare A’s and B’s checksum files, the difference with D is detected because

D in B’s checksum file has a different checksum than D in A’s checksum file. When the RIC

confers with other replicas about D, it will determine that B’s D is legitimate version of D

- Page 42 -

because D’s on B and C are the same. The repair mechanism then will update D on A using D

from either A or B. When A’s LIC runs next time, D’s new checksum will be incorporated into

A’s validated checksum file.

9. Issues Not Addressed in this Project

The issues that are important, but are not addressed in this project include:

• What’s new mechanism [Library2000-1].

• The mapping from UIDs of documents to the data [Library2000-2]. The proposed system

uses path names as UIDs.

• Algorithm that calculates good checksums of objects that contain large amount of data.

• Group membership protocol. The proposed system will have fixed group membership.

• Property that updates are either ignored or become reliable in a bounded time. The design

has the property that, if the updates are reflected on the majority of the replicas, it is highly

probable that the updates will become reliable within a bounded time.

• Comparison to or usage of update propagation schemes that rely on rumor mongery

[Shroeder1] or anti-atrophy sessions [Golding1, Golding2] which may be more effective than

the proposed design.

• The detection scheme works in the narrowly defined model. However, the scheme is

supposed to outlast technologies, but if the technologies change enough that the defined

model no longer applies, would the scheme still work? Do we aim to have it work?

• Fault detection technique that reads all the data on a system does not scale well when the

system scales. Disk striping technique might need to be incorporated into the discussed

scheme.

Out of all the issues pointed out here, the last one is possibly the most urgent. Let us expand

on the problem.

9.1 I/O Throughput and Striping

If our system reads the data serially, and we can assume that the I/O throughput is the limiting

factor in reading the data, then Equation 3 shows the time needed to do local integrity check.

- Page 43 -

Time taken to check data
of disk read size of disk

I O Thruput
_ _ _ _

_ _ _ _ _

/ _
= ×

Equation 3: Time Needed For Local Integrity Check (Serial Read)

If our system reads the data by striping, and we can assume that the bus throughput is the

limiting factor in reading the data, then Equation 4 shows the time needed to do local integrity

check.

Time taken to check data
of disk read size of disk

Bus Thruput
_ _ _ _

_ _ _ _ _

_
= ×

Equation 4: Time Needed For Local Integrity Check (Striping)

Table 15 shows a server’s configuration in the year 1992 and the year 2000. Table 16 shows

the time needed to complete local integrity check—without confirmation by voting—doing serial

read and striping.

Year Server System Configuration

1992 • 50 disks; each with 2 Gbytes

• I/O throughput: 5 Mbytes/Sec (SCSI-II)

• Bus throughput: 133 Mbytes/Sec (32-bit PCI)

2000 • 50 disks; each with 100 Gbytes

• I/O throughput: 10 Mbytes/Sec (?)

• Bus throughput: 266 Mbytes/Sec (64-bit PCI?)

Table 15: Server Configuration

Year Serial Read Striping

1992 5.56 hours 12.53 seconds

2000 5.79 days 5.22 hours

Table 16: Time Needed To Complete Local Integrity Check

- Page 44 -

We can deal we the scaling problem in two ways:

• by using striping

• by scaling up the TLOCAL and TREMOTE—the time intervals the LIC and the RIC operate

Both have disadvantages. If we use striping, the design, the analysis, and the implementation

of the detection scheme might be so complex that we cannot be sure the scheme is correct. By

scaling up the checking periods, we lengthen the window of vulnerability of the data. So it is

unclear at this point which approach is more advantageous.

10. Acknowledgment

My contribution to the L2000 replication research has been mostly the analysis of the scheme.

Most ideas are from [Library2000-1] paper, Mitchell Charity, and Jerry Saltzer. Contributions to

the report were made by Thomas Lee, Jeremy Hylton, and Ali Alavi.

I especially thank Mitchell and Jerry for patiently explaining to me issues that I needed to think

about—from embarrassingly simple issues to the most subtle ones. I thank Mitchell for

spending a great deal of time with me exploring different designs, and in helping me set up the

environments that I needed to get things going.

- Page 45 -

Bibliography

[6.826-1] 6.826 Class Handout #47. Replication Techniques. MIT Laboratory of Computer

Science. November 22, 1993.

[6.826-2] 6.826 Class Handout #42. Consensus. MIT Laboratory of Computer Science.

November 15, 1993.

[Dally1] Dally, W. J. 6.823 Lectures Note #14. MIT Laboratory of Computer Science. Spring

1994.

[Golding1] Richard A. Golding. A weak-consistency architecture for distributed information

services. Technical Report UCSC-CRL-92-31 (6 July 1992). Concurrent Systems Laboratory,

University of California at Santa Cruz.

[Golding2] Richard A. Golding and Darrell D. E. Long. The Performance of Weak-consistency

Replication Protocols. Technical Report UCSC-CRL-92-30 (6 July 1992). Concurrent Systems

Laboratory, University of California at Santa Cruz.

[Gray1] Jim Gray and Andreas Reuter, “Fault Tolerance,” from Transaction Processing:

Concepts and Techniques, Morgan Kaufmann, 1993, pp. 93-156.

[Hisgen1] Hisgen, Andy, et al. “Granularity and Semantic Level of Replication in the Echo

Distributed File System,” Proceedings of the Workshop on Management of replicated Data,

Houston, Texas (November 8, 1990), pp. 2-4.

[Library2000-1] Storage Service Replication Design Thoughts, Ideas from Mitchell Charity, Win

Treese, and Jerry Saltzer, Library 2000, Draft of 1/7/93.

/afs/athena.mit.edu/user/other/Saltzer/library/work-in-progress/think-pieces/storage-

replication.txt.

- Page 46 -

[Library2000-2] Semantics of the Library 2000 Network Storage Service, Version of March 9,

1993, Notes from meetings and discussion attended by Mitchell Charity, Quinton Zondervan,

Manish Mazumdar, Rob Miller, Thomas Lee, Win Treese, Ron Weiss, and J. H. Saltzer.

/afs/athena.mit.edu/user/other/Saltzer/library/work-in-progress/think-pieces/storage-server.txt

[Liskov1] Barbara Liskov, et al. Replication in the Harp File System, MIT LCS Technical Report

MIT/LCS/TM-456. August 1991.

[Page1] Page, Thomas W., Jr., et al. Architecture of the Ficus Scaleable Replicated File

System. UCLA Computer Science Department Technical Report CSD-910005, March 1991.

[Patterson1] David A. Patterson, Garth Gibson, and Randy H. Katz. A Case for Redundant

Arrays of Inexpensive Disks (RAID). ACM SIGMOD Conference, pages 109-116, June 1988.

[Saltzer1] Jerome H. Saltzer. LIBRARY 2000, A research prototype of the on-line electronic

library of tomorrow. /afs/athena.mit.edu/user/other/Saltzer/library/work-in-progress/

prospectus.txt. October 31, 1991

[Satyanarayanan1] Mahadev Satyanarayanan, et al. “Coda: A Highly Available File System for a

Distributed Workstation Environment,” IEEE Transactions on Computers 39, 4 (April 1990), pp.

447-459.

[Schroeder1] Michael D. Schroeder, Andrew D. Birrell, and Roger M. Needham. Experience with

Grapevine: the growth of a distributed system. ACM Transactions on Computer systems,

2(1):3-23 (February 1984).

- Page 47 -

Appendix

11. Implementation

This section describes some of the implementation details done so far in the project. I must

admit that I have not done much in implementing the design except laying out the ground works

so that I could complete my MEng thesis, which will not be pursued, more easily.

11.1 Pathname as UID

We have not yet agreed upon the UIDs that will be used in the system. Since this is a pilot

project that studies the feasibility of the algorithm, we decide to use path names as the

documents’ UIDs. Moreover, we do not want to associate any particular information to the

documents. Hence, a ULTT is not needed.

11.2 Network Interface

Network interface’s functionalities are described in section 6.1. The implementation is located

in /r/development/projects/kom/server.pl. The interface can be accessed by creating a TCP/IP

connection (such as telnet) to reading-room-3.lcs.mit.edu using port 1. The connection

creation will wake up MUXD daemon which listens to port 1. To initiate one of the network

interfaces, “rep1”, “rep2”, and “rep3” can be given to the MUXD daemon which will run the

specified program. 3 interfaces are provided because we are trying to simulate 3 replicas on

one machine.

Table 17 shows the primitives supported by the implemented interface. “enum” primitive is not

needed by the RIC, but was implemented for an earlier design of the RIC. cksumrecord has

not been implemented.

- Page 48 -

Functions Descriptions

enum Enumerates all UIDs on the systems.

get(UID) Gets the checksum and the data of the specified UID

cksum(UID) Returns the checksum of the UID

bye Quits the interface.

Table 17: Network Interface Implemented

Suppose a process needs to retrieve the data with the UID “1/2” from the replica 1 (out of 3)

using the interface, the process follows the following procedure:

1. telnet reading-room-3.lcs.mit.edu 1\n

2. rep1\r\n

3. get\n

4. 1/2\n

5. bye\n

The interface does not give a response until step 4 is completed when the interface returns 4

data items: the normal completion code “normal”, the checksum for “1/2”, the number of lines in

“1/2”, and the contents of “1/2”.

Other primitives listed in Table 17 have similar usage.

11.3 Replica Interface

Replica interface’s functionality is described in section 6.2. By design, the network interface, as

described in Appendix 11.2, should be implemented on top of the replica interface. The

network interface is initiated by MUXD daemon to satisfy the interface user’s request. To

satisfy the request, the network interface should invoke the functionalities of the replica

interface.

Since the replica interface needs to service the network interface and other detection

mechanisms, it can be conveniently implemented as Perl scripts that can be run separately

from other parts of the system. When the network interface or the detection mechanisms use

the replica interface, they execute the associated Perl scripts to access the functions. If a UID

- Page 49 -

is specified through the interface, the replica interface first translates the UID to a file location

and then satisfies the particular operation.

The above two paragraphs describe the ideal implementation of the replica interface. However,

the design of the system comes after an exploratory implementation. Hence, the priori

implementation is somewhat different from the design.

The implementation of the replica interface’s functionality is embedded in the network interface

as well as a few executable Perl scripts. All primitives listed in Table 17 are embedded in the

network interface program /r/development/projects/kom/server.pl. The enum&cksum primitive

is implemented in the checksum file generator as will be described in Appendix 11.4.3. The

other primitives not mentioned have not been implemented.

11.4 What was Completed

Table 18 lists the tasks that have been completed in the project. The first column lists the

areas that I wanted to address. The second column lists the tasks that have already been done

in that area. All Perl codes can be found in /r/development/projects/kom on reading-room-

3.lcs.mit.edu.

Areas Completion

Environments • Network Interface

• File system structures set up for testing

Local Integrity Checker • Checksum file generator

• Checksum file comparator

Remote Integrity Checker • Checksum file comparator

• Routines that interface with network interface

Table 18: Tasks Completed

Each of the completion in Table 18 is described briefly as follows. Note that the checksum file

comparator is used by both the LIC and the RIC.

- Page 50 -

11.4.1 Network Interface

What was done to implement the network interface was described in Appendix 11.2.

11.4.2 File System Structures

reading-room-3.lcs.mit.edu is set up to simulate 3 replicas. The programs for each replica and

its data are located in /r/development/projects/rep. Each “replica” has its own program and

data directories.

11.4.3 Checksum File Generator

The checksum file generator is a program that lists all the files under a specified starting

directory and their checksums. The program requires one parameter: the starting directory.

The program, located in /r/development/projects/kom/ckfiles.pl, can be used to generate a

checksum file used in local integrity check.

11.4.4 Checksum File Comparator

The checksum file comparator is a program that compares two checksum files generated by the

checksum file generator and lists the differences between the files. The outputs are composed

of three files: the add files (*.add), the delete file (*.del), and the update file (*.upd). The

program takes three parameters: the new file, the old file, and the output files’ prefix. The

program checks what has changed from the old file in the new file, and output to the files with

the specified prefix. The program is located in /r/development/projects/kom/repfiles.pl.

11.4.5 Local Integrity Checker Skeleton

This is the skeleton of the LIC daemon. It incorporates the checksum file generator and the

checksum file comparator to do the local integrity check. When the program is started, it will

delay for a random period of time before it starts executing. Once it finishes executing, it sleeps

for TLOCAL minutes before it executes again. The program is located in

/r/development/projects/kom/localck.pl. Note that the step to categorize the legitimacy of the

changes has not been implemented.

- Page 51 -

11.4.6 Remote Integrity Checker Skeleton

This is the skeleton of the remote integrity checker. The skeleton is the implementation of the

previous design of the remote integrity checker. Although it does the wrong thing, meaning it

does something else rather than the proposed design, it contains the random delay, as in

11.4.5, and other miscellaneous functions needed to implement the designed RIC. The

program is located in /r/development/projects/kom/remoteck.pl.

11.4.7 Routines That Interface With Network Interface

The routines are built as part of the original design of the RIC. They are scattered throughout

/r/development/projects/kom/remoteck.pl. The routine initiates a TCP/IP connection to MUXD

daemon as well as starting the network interface.

11.5 Cache and Detecting Faults on Disk

The question is how do we make sure, when a file integrity is checked, that the file on the

physical disk, not a copy of the file in the cache, is checked? Our AIX system does not have a

utility that flushes the cache to disks. Therefore, we are never sure if a file being checked is in

the cache. To simplify things, we assume that the data size on our system is much larger than

the cache size. Hence, we can be reasonably sure that every time the LIC is working, the

check is being done on the physical file bits instead of the cached file bits.

11.6 Order of Listing in Checksum File

We assume the UIDs have a complete order and hence, they can be sorted unambiguously. In

the implementation of the integrity checker, we list the files and their checksums by the sorting

order implemented in Perl’s sort utility. The order makes checking the differences of the files

easy: we can use a finite-state machine to do the job. Interested readers should check the

detail in /r/development/projects/kom/repfiles.pl.

